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gled face editing. From the original image (center), we propose two opposite editing directions where only one attribute is

manipulated at a time. To the right: ‘slender’, ‘smiling’, ‘wavy hair’ and ‘makeup’ and to the left: ‘receding hairline’, ‘age’,
‘gray hair’ and ‘eyeglasses’. All results are obtained at resolution 10242.

ABSTRACT

Recent work has demonstrated the great potential of image
editing in the latent space of powerful deep generative mod-
els such as StyleGAN. However, the success of such meth-
ods relies on the assumption that a linear hyperplane may
separate the latent space into two subspaces for a binary at-
tribute. In this work, we show that this hypothesis is a signif-
icant limitation and propose to learn a non-linear, regularized
and identity-preserving latent space transformation that leads
to more accurate and disentangled manipulations of facial at-
tributes.

Index Terms— Face editing, disentangled representation,
GAN

1. INTRODUCTION

Facial attribute manipulation has many real-world applica-
tions, such as film post-production or photo retouching. Pre-
vious works addressing this problem have mainly focused
on encoder-decoder based architectures. Recently, there has
been an increasing interest in exploring this problem in the
latent space of generative networks, due to their impressive
results in high quality images synthesis [1, 2, 3, 4]. Current
approaches assume that a linear interpolation of latent codes
lead to smooth variations of a visual attribute [5, 6]. However,
the discovered directions often modify several attributes si-
multaneously; they are entangled. For example, wearing eye-
glasses is often correlated with age. Furthermore, since no at-
tribute has been used in the training of the generative models,
there is no reason to assume that the transformation associated

to one attribute should be linear. This work proposes a trans-
formation network to navigate the StyleGAN latent space in
a disentangled and non-linear manner, so that each attribute
can be manipulated independently and smoothly.

To achieve this, we train a transformation network in the
latent space to modify each attribute independently, explicitly
preserving the other attributes. To ensure better disentangle-
ment, we propose a correlation-wise attribute regularization
term in the objective function during the training. In addi-
tion our model handles the sequential modification of several
attributes with great photo-realism, which, to the best of our
knowledge, we are the first to achieve. We conduct exper-
iments on the state-of-the-art generative model StyleGAN2
[3] and perform qualitative and quantitative evaluations.

Our contributions are summarized as follows: (1) We pro-
pose a transformation network to navigate the StyleGAN la-
tent space in a non-linear manner. (2) We realize control-
lable and disentangled facial attribute manipulations without
any manual intervention, contrary to previous approaches [5,
6]. (3) We propose a correlation-wise attribute regularization
term, to better preserve the attributes which we do not wish
to modify. (4) We illustrate experimentally that our approach
achieves a sequential modification of several attributes, allow-
ing artists to edit images in a controlled, smooth and stable
manner for real-world applications.

2. RELATED WORKS

Facial Attribute Manipulation. Upchurch et al. [7] pro-
posed an optimization-based method using linear interpola-
tion of deep features from pretrained convnets to realize high-



level semantic transformations. Lample ef al. [8] and Choi et
al. [9] trained encoder-decoder based architectures that are
able to disentangle attributes in the latent space and generate
manipulated images by varying the attribute values. He et al.
[10] and Liu et al. [11] further improved the attribute manip-
ulation accuracy by introducing additional attribute manipu-
lation loss. These works are limited to low resolution images.
Recently, Chen et al. [12] proposed a pixel translation frame-
work for high resolution facial image editing. Viazovetskyi
et al. [13] used generated high resolution images to train the
pix2pixHD [14] for facial attribute manipulation.

Latent Space Exploration. Thanks to the style mixing ca-
pacity of StyleGAN [2], various studies have assessed the
possibility of manipulating images via latent spaces of im-
age generators. Collins et al. [15] applied k-means clustering
to the hidden layer activations of StyleGAN and discovered a
decomposition of semantic objects, which allow local editing.
Abdal et al. [16] proposed an optimization-based method to
project real images to the latent space of StyleGAN, which is
combined with a scribbled image to obtain a realistic image
modified with StyleGAN. Goetschalckx et al. [17] learned a
manifold in the latent space of BigGAN [4] to modify the
memorability of generated images. The work of Shen et al.
[5] shows that GANSs trained on high quality images learn var-
ious semantics in some linear subspaces of the latent space.
Tewari et al. [18] introduced an approach that provides a face
rig-like control on generated images by training a rigging net-
work between 3D morphable face model’s semantic parame-
ters and StyleGAN’s input. Other approaches have attempted
to imitate or directly carry out Principal Component Analysis
(PCA) in the latent space of generative networks [6, 19]. Re-
cent work of Nie et al. [20] showed that disentanglement of
StyleGAN’s latent space can be improved by adding a mutual
information loss and a limited supervision at training time.

3. METHOD

Let z € Z be a random vector drawn from the latent space
Z of a given generator G. Typically in our work, we re-
fer to the latent space W of StyleGAN2 generator [3]. Let
x = G(z) € X be the corresponding image generated with
G. Our goal is to learn a transformation network T, such
that G(T(z)) is an image with the same identity as x, but
where a single facial attribute has been modified, all other at-
tributes being unchanged. This transformation provides the
non-linear navigation of the latent space for modifying facial
attributes, which is the final goal of this work. See Figure 1
for an illustration.

High quality generators contain many parameters, so to
reduce training time we compute the objective functions in
the latent space instead of the image space. We first train a
classifier C, in the latent space to measure the attributes of
latent codes. During the training of T, Cy is freezed. To
modify the target attribute, we apply a classification loss. To
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Fig. 1. Latent vector transformation model for single at-
tribute modification. Given a latent vector z, T(z) is the
modified latent vector obtained through our transformation
network T, which is trained to modify one target attribute
in the generated image, without affecting the others. Cy is a
pretrained attribute classifier in the latent space.

preserve the other attributes and maintain the identity, we use,
respectively, a correlation-wise attribute regularization term
and a reconstruction loss on the latent codes.

3.1. Models

Latent Classifier. In order to train an attribute classifier C; in
the latent space, we first generate training data by randomly
sampling 500, 000 latent vectors and passing them through
the generator G. We then automatically label the correspond-
ing images using a classifier pretrained on CelebA-HQ dataset
[1]. The pretrained classifier is implemented using ResNet-
50 network [21] and trained to predict simultaneously all the
attributes of CelebA-HQ. Thus we obtain the label for each
latent vector. A latent code classifier Cy is further trained on
the latent vector-label pairs. Our implementation uses three
linear layers with ReL.U activations, which achieves higher
precision, recall and F; compared to a simple linear layer.
This shows that the linear hypothesis of the latent space is not
appropriate.

Latent Transformer. We express the transformation T as
a deformation network H modeled with two fully connected
layers with LeakyReLU activations. The scaling factor « is
used to control the direction and the amount of change of the
target attribute:

T(z,a) =z + o - H(z),with a € [-1,1]. (1)

3.2. Training Objectives

For each target attribute index j, we train a separate network
T;. To simplify notation, we omit the index j in T; and the
losses. Compared to x, the modified image G(T(z)) should
differ in the target attribute only, the others being preserved.
For this, we use the following losses:

Classification. We denote the pretrained latent classifier as
C,. The modified latent vector T(z) should have the desired
label 3 for the ;%" target attribute:

Eclass = ¢(CZ(T(Z))[]Lﬂ)7 (2)



where ¢ denotes the binary cross-entropy loss.
Correlation-wise attribute regularization. In order to pre-
serve other attributes, we use Euclidean distance between the
classification features, extracted from C,. The distance of
each attribute is weighted according to its correlation with the
target attribute. For the attributes strongly correlated with the
target, the coefficient is close to zero so as not to block the
transform, while for the unrelated attributes it is close to one,
fully regularized. The regularization term is defined as:

= 2i (1= ]) E[[|Ce(T(2))[i] = Cu(2)[i]l|2], (3)

where ;5 is the correlation of the attribute i*" and the target
attribute j** computed on CelebA-HQ.

Reconstruction. To enforce identity preservation of the mod-
ified image, regularize the difference between z and T'(z):

Eattr

Lrecon = E[HT(Z) - Z||2]~ “4)
The full objective can be expressed as:
[' = *Cclass + )\attrﬁattr + )\recon‘creconv (5)

where Aattr and Apecon are weights balancing each loss.

4. EXPERIMENTS

4.1. Implementation Details

We conduct experiments on the state-of-the-art image gener-
ator StyleGAN2 [3] pretrained on FFHQ 10242 dataset. Our
training data is the latent vector-label pairs presented in Sec-
tion 3.1. For each facial attribute, we train a separate trans-
formation network in the latent space WV of StyleGAN2. We
set Aattr = 1 and Apecon = 100. At training time, the scaling
factor « is set according to the target attribute classification
probability p of the original latent code (1 —p forp < 0.5, —p
for p > 0.5). At test time, « is suggested to be sampled from
[—1.5,1.5]. Our implementation is built in PyTorch [22]. The
batch size is set to 16 and each model is trained on 10K ran-
dom latent vector-label pairs for 10 epochs. We use the Adam
[23] optimizer with learning rate set to 1074, B; = 0.9 and
B2 = 0.999.

4.2. Qualitative Results

Attribute manipulation. We compare our manipulation re-
sults with two recent state-of-the-art methods: GANSpace
[6] and InterFaceGAN [5]. GANSpace explores latent direc-
tions using PCA and manually identifies the attributes cor-
responding to each direction. InterFaceGAN randomly sam-
ples latent codes, annotates the generated images, and finds
a hyper-plane for each attribute. We train InterFaceGAN in
StyleGAN2 latent space for all the attributes of CelebA-HQ,
using the 500K latent vector-label pairs. To compare with
these methods, we are limited to the attributes that both can
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Fig. 2. Disentangled facial attribute manipulation on
StyleGAN2 generated images. Each Line corresponds to an
attribute manipulation. In each subfigure, from left to right
are the original image, the manipulation result of GANSpace
[6], that of InterFaceGAN [5] and ours. Compared to recent
approaches, our method achieves a controllable, disentangled
and realistic editing, where the person’s identity is preserved.

manage. In Figure 2, each row shows the manipulation re-
sults of one attribute. In each row, the 1st column is the
original generated image. The 2nd column is the result of
GANSpace, where the attributes are not well disentangled.
This method has good performance on local features like ‘nar-
row eyes’ or ‘beard’. However, ‘age’ is correlated with gen-
der (4th row). The 3rd column corresponds to the result of
InterFaceGAN, where face identity undergoes visible modi-
fications and attributes are not well disentangled. For exam-
ple, modifying ‘gray hair’ also changes age; modifying ‘nar-
row eyes enhances smiling. This is because when training the
hyper-plane for one attribute, no regularization was applied to
other attributes. The last column shows our result. Thanks to
the attribute regularization term, our method preserves better
the identity and generates more disentangled manipulations.

Scaling Factor. In order to ensure that the scaling factor
(amount of change in each attribute direction) is not the
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Fig. 3. Progressive latent manipulation. From left to right,
the results of progressively moving a latent code in the ‘Eye-
glasses’ direction. Compared to InterFaceGAN, our results
preserve the identity and other attributes better.
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Fig. 4. Sequential disentangled attribute manipulation.
The 2nd to 5th columns correspond to a sequential modifi-
cation of: ‘slender’, ‘wavy hair’, ‘bangs’ and ‘eyeglasses’.
Compared to InterFaceGAN, our approach achieves better
disentangled manipulation and allows sequential attribute
modification.

source of the previous approaches shortcomings, in Figure 3
we show a progressive manipulation result on the ‘eyeglasses’
attribute. Compared to InterFaceGAN, our manipulation per-
forms better in identity and attribute preservation.
Sequential attribute manipulation. Another advantage of
our approach is the ability to modify several attributes se-
quentially, in a disentangled manner. In Figure 4 we show
a sequential modification of several attributes: ‘slender’,
‘wavy hair’, ‘bangs’ and ‘eyeglasses’. The top row presents
the results of InterFaceGAN, where we observe that when
adding bangs, age is reduced. Their method is able to man-
age two consecutive attribute modifications but fails on more
attributes as the error of each manipulation accumulates. On
the contrary, our method is able to realize several sequential
attribute manipulations without influencing the identity of the
original person. As shown in the bottom row, between each
two columns, only the indicated attribute is changed.

4.3. Quantitative Evaluation

We perform a quantitative comparison of our approach and
InterFaceGAN. For each target attribute, 1000 random latent
codes are manipulated to reverse the target attribute, such as

Identity Attributes Classification

Attribute Preservation(%) Preservation(%) Accuracy(%)
InterFace Ours InterFace Ours InterFace Ours
Age 7628  99.69 81.79  90.65 99.90 98.10
Eyeglasses 99.53  99.69 86.22 90.25 8550 97.10
Gender 91.28 99.23 7691 86.25 98.60  90.90
Smiling 99.70  100.00 86.87 89.58 100.00 100.00
Average 91.70  99.65 8295 89.19 96.00 96.53

Table 1. Quantitative evaluation on attribute manipula-
tions. For each target attribute, we manipulate 1000 latent
codes and compare attributes of input and output images.
The identity preservation rate is the percentage of identity-
preserved manipulations. The attribute preservation rate is
the percentage of unchanged ones on other attributes. The
classification accuracy is the percentage of successful manip-
ulations on the target attribute. Our approach outperforms
InterfaceGAN in identity and attribute preservation on suc-
cessful manipulations, while achieving similar classification
accuracy on the target attribute.

‘w/ bangs’ to ‘w/o bangs’. We label the input and manipu-
lated latent codes by passing them to StyleGAN2 and anno-
tating the output images. We analyze the manipulation results
with three metrics: (1) Identity Preservation, percentage of
identity-preserved manipulations, measured with the cosine
similarity between VGG-Face [24] embeddings at 0.1% False
Acceptance Rate; (2) Attribute Preservation, average of per-
centage of unchanged attributes; (3) Classification Accuracy,
percentage of successful manipulations on the target attribute.
(1) and (2) are calculated on successful manipulations.

To have a comparable classification accuracy, for our
method we set the scaling factor to 1.25, while for InterFace-
GAN we set the distance to 3, maximum value recommended
by the authors. As shown in Table 1, our method outper-
forms InterFaceGAN in identity and attribute preservation.
We also observe that InterFaceGAN displays better classifica-
tion accuracy on some attributes, probably taking advantage
of the entanglement of attributes. In the case of ‘gender’,
for example, adding ‘beard’ and changing ‘hairstyle’ when
transforming women to men helps the classification.

5. CONCLUSION

In this paper, we presented a simple framework for disen-
tangled attribute manipulation on StyleGAN2 generated im-
ages. Compared to state-of-the-art approaches, our method
achieves realistic manipulations with better disentanglement
and higher identity preservation. In addition, our method
is able to generate sequential disentangled attribute manip-
ulations, which offers great flexibility and controllability to
users. This property is favorable for artists in imaging indus-
try, with a potential in more real-world applications. Further
work will study the extension to natural images.
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